

Welcome to chemview’s documentation!

chemview is an interactive molecular viewer designed for the IPython notebook. With chemview you can:

	Display molecules and systems in an easy and efficient manner.

	Look at those systems evolve in time. chemview is fast by design, updates on the properties are performed only when necessary.

	Perform interactive data visualization in the IPython notebook.

	Create new ways to visualize your data by using the flexible low-level API.

chemview is implemented using web technologies such as WebGL [http://en.wikipedia.org/wiki/WebGL] and three.js [http://threejs.org], giving chemview an excellent multi-platform support.

Excited? Try it out (it works on smartphones too):

	Left Click: Rotate

	Wheel: Zoom

	Right Click: Pan

Go ahead with the Installation and Quick Start.

Contents:

	Installation and Quick Start
	Quick Start

	Viewing Molecules
	Using the MolecularViewer

	Viewing Molecules with Chemlab

	Viewing Molecules with MDTraj

	Making custom representations

	Animation
	Visualizing Trajectories/Frames

	Cookbook
	Syncronizing cameras across multiple widgets

	Plotting molecular orbitals

	API Reference
	Module chemview.widget

	Module chemview.viewer

	Module chemview.trajectory

	Module chemview.utils

chemview is licensed under the LGPL2 and is hosted on github at http://github.com/gabrielelanaro/chemview.

Credits

chemview branched from the mdtraj [http://mdtraj.org] project in an effort to make trajectory viewing possible in the browser. It is developed mainly by Gabriele Lanaro [http://gabrielelanaro.github.io]. While the code is original work, the idea was inspired by iview [https://github.com/HongjianLi/iview].

Indices and tables

	Index

	Module Index

	Search Page

Installation and Quick Start

Installing chemview with conda is fairly easy. First download anaconda (or miniconda):

http://continuum.io/downloads

To install chemview using conda you can first create an environment (optional):

$ conda create -p /path/to/new/environment python
$ source activate /path/to/new/environment

then, you can install chemview directly from the binstar channel.

$ conda install -c http://conda.binstar.org/gabrielelanaro

or, for the development version you can manually install the dependencies:

$ conda install notebook numpy numba
$ git clone https://github.com/gabrielelanaro/chemview
$ cd chemview
$ pip install .

It is also possible to install chemview using pip:

pip install notebook numpy numba # Jupyter 4.x

Download and install chemview
git clone https://github.com/gabrielelanaro/chemview
cd chemview
pip install .

Chemview has an optional <povray http://www.povray.org/>_ backend for
rendering high quality images. For this you’ll need to install the povray software
and the vapory bindings:

pip install vapory

Quick Start

In this section we’ll see how to visualize a benzene molecule with chemview. To start, let’s launch IPython notebook and start a new notebook.

To import chemview you can write and execute the following code in a
cell:

from chemview import enable_notebook, MolecularViewer
enable_notebook()

The function enable_notebook will load the necessary files to display
the molecular viewer in the browser. To display a benzene molecule we
need at least two pieces of information:

	The atomic types

	The atomic coordinates

	The bonds between atoms

For the scope of this tutorial, the information were extracted from
here. You can use chemical package (like mdtraj or chemlab) to read the
coordinates of your molecules.

We define the coordinates as a numpy array, the atomic types as a list
of strings and the bonds as a list of start, end tuples.

import numpy as np
coordinates = np.array([[0.00, 0.13, 0.00], [0.12, 0.07, 0.00], [0.12,-0.07, 0.00],
 [0.00,-0.14, 0.00], [-0.12,-0.07, 0.00],[-0.12, 0.07, 0.00],
 [0.00, 0.24, 0.00], [0.21, 0.12, 0.00], [0.21,-0.12, 0.00],
 [0.00,-0.24, 0.00], [-0.21,-0.12, 0.00],[-0.21, 0.12, 0.00]])
atomic_types = ['C', 'C', 'C', 'C', 'C', 'C', 'H', 'H', 'H', 'H', 'H', 'H']
bonds = [(0, 6), (1, 7), (2, 8), (3, 9), (4, 10), (5, 11),
 (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 0)]

We can pass those to the class MolecularViewer and call the method lines
to render the molecule as a wireframe:

mv = MolecularViewer(coordinates, topology={'atom_types': atomic_types,
 'bonds': bonds})
mv.lines()
mv

You can rotate (left click), pan(right click) and zoom (wheel) to
visualize your molecules.

Congratulation for finishing the first tutorial! You can now move on more advanced topics:

	Viewing Molecules
	Using the MolecularViewer

	Viewing Molecules with Chemlab

	Viewing Molecules with MDTraj

	Making custom representations

	Animation
	Visualizing Trajectories/Frames

	Low Level API
	API Reference

Viewing Molecules

Using the MolecularViewer

MolecularViewer is a library-agnostic tool to display molecules in chemview.
In this section we will see how to use it, and what representations are
currently available.

To create a MolecularViewer instance we need the positions of the atoms,
as an array of x, y, z coordinates, and a description of
the features and connectivity of the system (also called topology).

The topology is a nested dictionary with the following fields:

	atom_types

	(required field) A list of strings, each representing an atom symbol.

Example: ["H", "C", "N", "O", ..]

	bonds

	A list of tuples indicating the index of the bond extrema.

Example: [(0, 1), (1, 2), ...]

	atom_names

	A list of atom names, like the ones used in pdb files

Example: ["HA", "CA", "N", ...]

	residue_indices

	A nested list of indices (as tuples) for each residue present in the molecule.

Example: [(0, 1, 2, 3, 4, 5), (6, 7, 8, 9, 10), ...]

	residue_types

	A list of strings corresponding to residue types.

Example: ["ALA", "GLY", ...]

	secondary_structure

	A list of strings representing the secondary structure of each residue,
H for helix, E for sheet, C for coil.

Example: ["H", "H", "H", "C", "C", "E", "E" ...]

Note

As the description of the topology is quite involved, you
can combine chemview with another library that provides the topology directly from
the chemical data files (such as chemlab [https://chemlab.readthedocs.org] and mdtraj [http://mdtraj.org]).

Once you create your molecular viewer, you can display the molecule in a variety of ways:

	points: the atomic positions will be represented as points, color-coded by atom.

Example:

mv.points()

[image: _images/points.png]

	lines: the bonds will be represented as lines

Example:

mv.lines()

[image: _images/lines.png]

	ball_and_sticks: the classical ball and stick representation. Atom are spheres, bonds are cylinders. At the moment this representation is not suitable for very large molecules and animations.

Example:

mv.ball_and_sticks()

[image: _images/ball_and_stick.png]

	line_ribbon: the protein backbone is represented by a smooth line.

Example:

mv.line_ribbon()

[image: _images/line_ribbon.png]

	cylinder_and_strand: the protein backbone is represented by a smooth, solid tube, and the helices are represented as cylinders.

Example:

mv.line_ribbon()

[image: _images/cylinder_and_strand.png]

See also

The MolecularViewer documentation at api/index

You can also add isosurfaces with the command MolecularViewer.add_isosurface() that takes a function and an isovalue. Given a function \(f(x, y, z)\), an isosurface is the set of points for which the function assumes a certain value. For example if you want to plot the surface of sphere with radius 1, we can select a function of the type:

\[f(x, y, z) = x^2 + y^2 + z^2\]

and set the isovalue would be 1, so that we obtain the surface whose set of points that satisfy the equation of a sphere:

\[x^2 + y^2 + z^2 = 1\]

See also

Plotting molecular orbitals

Viewing Molecules with Chemlab

The development version of chemlab [https://chemlab.readthedocs.org] provides a preliminary integration with chemview,
check out the example notebook [http://nbviewer.ipython.org/github/chemlab/chemlab/blob/master/examples/New%20IPython%20support.ipynb].

Viewing Molecules with MDTraj

In the near future, mdtraj [http://mdtraj.org] will provide integration.

While you wait, take a look at the docs [http://mdtraj.org] and learn about mdtraj.

Making custom representations

chemview provides an easy-to-use API to create new ways to display your data
and build novel tools. The class RepresentationViewer contains methods to
display common 3D shapes.

To create a RepresentationViewer instance, type:

rv = RepresentationViewer()
rv

This will display an empty viewer. To add objects, we can use the method
RepresentationViewer.add_representation(). The method takes two
parameters: the name of the representation to display, and a dictionary of
options, that are specific for each representation.

For example, to add three points on the screen we will use the following parameters:

rv.add_representation('points', {'coordinates', np.array([[0.0, 0.0, 0.0],
 1.0, 0.0, 0.0],
 2.0, 0.0, 0.0])})

Warning

The RepresentationViewer communicates directly with the Javascript layer and,
being outside of the realm of Python doesn’t provide nice exception tracebacks.
Be rigorous with parameter types.

For more examples (with pictures) you can check the test notebook [http://nbviewer.ipython.org/github/gabrielelanaro/chemview/blob/master/TestNotebook.ipynb].

Below reference of the available representations, along with their options:

	points

	display a set of coordinates as points with different colors and sizes.

Options:

	
	coordinates

	numpy array of 3D coordinates (float32)

	
	sizes

	python list of floats representing the size of each point

	
	colors

	python list of 32 bit integers representing the color of each point.

Example using HEX representation: [0xffffff, 0x00ffff, 0xff0000, ...]

	lines

	display a set of lines with different colors.

Options:

	
	startCoords

	numpy array of 3D coordinates representing the starting point of each line

	
	endCoords

	numpy array of 3D coordinates representing the ending point of each line

	
	startColors

	list of 32 bit integers corresponding to the color of the starting point

	
	endColors

	list of 32 bit integers corresponding to the color of the ending point

	cylinders

	display a set of cylinders. This is a slow primitive, avoid using it for animations; use lines instead.

Options:

	
	startCoords

	numpy array of 3D coordinates representing the starting point of each cylinder

	
	endCoords

	numpy array of 3D coordinates representing the ending point of each cylinder

	
	colors

	list of 32 bit integers corresponding to the color of each cylinder

	
	radii

	list of float corresponding to the radius of each cylinder

	smoothline

	display a smooth line that passes through a set of points.

Options:

	
	coordinates

	numpy array of 3D coordinates representing the control points of the smooth line.

	
	color

	32 bit integer (hex) color of the line

	
	resolution

	int, number of subdivision along the path between control points. Controls the smoothness

	smoothtube

	display a smooth tube that passes through a set of points. This is a slow primitive, not suitable for animating very large objects; use smoothline instead.

Options:

	
	coordinates

	numpy array of 3D coordinates representing the control points of the smooth tube.

	
	color

	32 bit integer (hex) color of the tube

	
	radius

	float representing the radius of the tube

	
	resolution

	int, number of subdivision along the path between control points. Controls the smoothness

	spheres

	display a set of spheres. This primitive is slow, avoid using it for animations; use points instead.

Options:

	
	coordinates

	numpy array of 3D coordinates representing the position of the spheres.

	
	colors

	list of 32 bit integers representing the color of each sphere

	
	radii

	list of float, radius of each sphere

	
	resolution

	int, number of vertical and horizontal subdivisions to make the sphere:
high resolution means slow performance.

Animation

In this section we’ll see how to update the molecular viewer. We’ll start by creating a water molecule using the MolecularViewer:

import numpy as np
from chemview import MolecularViewer, enable_notebook
enable_notebook()

Draw a water molecule
mv = MolecularViewer(np.array([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]),
 {'atom_types': ['H', 'O', 'H'],
 'bonds': [[0, 1], [1, 2]]},
 width = 300,
 height = 300)
mv.points()
mv.lines()
mv

[image: _images/water_wireframe.png]

	then, all we need to do to move the molecule is to assign a new vector to the attribute coordinates.

	To translate the molecule, we add 0.1 to the x coordinate of each atom:

new_coordinates = mv.coordinates + [0.1, 0.0, 0.0]
mv.coordinates = new_coordinates

Important

To properly update the coordinates, you have to the = (equal) sign, or the system won’t detect the update. Example:

Good: update will be triggered
mv.coordinates = mv.coordinates + [0.1, 0.0, 0.0]

Bad: update won't be triggered
mv.coordinates += [0.1, 0.0, 0.0]

Visualizing Trajectories/Frames

Chemview can display snapshots of systems evolving in time, using a video-player like interface. This functionality is provided by the TrajectoryViewer class.
The TrajectoryViewer widget is a combination of a MolecularViewer widget and a set of controls that automatically update the frames.

To start, we’ll see expand of the previous example. To use the TrajectoryViewer, we need a list of coordinates (one for each frame), and the topology.
We first create the initial frame start_coordinates, then we translate those coordinates by 0.1 units in the x axis for 30 times, once for each frame:

start_coordinates = np.array([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]])

frames = []
for i in range(30):
 frames.append(start_coordinates + [0.1, 0.0, 0.0])
 start_coordinates += [0.1, 0.0, 0.0]

At this point, we can use the trajectory viewer to visualize the frames.

from chemview import TrajectoryViewer

tv = TrajectoryViewer(frames, {'atom_types': ['H', 'O', 'H'],
 'bonds': [[0, 1], [1, 2]]})
tv.lines()
tv

Screenshot:

[image: _images/traj_water.png]
You should now have a nice bar that lets you play, pause, rewind your frames!

Using mdtraj

How do we use the trajectory viewer in practice? To show a real-world example we can get some help from the library mdtraj [http://mdtraj.org].

With mdtraj [http://mdtraj.org] we can read a system and a series of snapshots generated from a simulation.

import mdtraj as md
traj = md.load_pdb('2M6K.pdb')

An mdtraj trajectory contains the coordinates for each frame in the attribute traj.xyz), plus a topology specification in traj.topology. The topology can be converted to chemview format using the utility chemview.contrib.topology_mdtraj(), that takes the trajectory as an input.

from chemview.contrib import topology_mdtraj

tv = TrajectoryViewer(traj.xyz, topology_mdtraj(traj))
tv.line_ribbon()
tv

Screenshot:

[image: Screenshot]

Tip

When animating trajectories of big molecules and systems, use simple representations such as lines, points and line_ribbon because
they are much faster than their “solid” counterparts vdw, ball_and_stick and strand.

Low Level API

	API Reference
	Module chemview.widget

	Module chemview.viewer

	Module chemview.trajectory

	Module chemview.utils

API Reference

Module chemview.widget

	
class RepresentationViewer(self, width=500, height=500)

	RepresentationViewer is an IPython notebook widget useful to display 3d scenes through webgl.

Example:

from IPython.display import display

rv = RepresentationViewer()
rv.add_representation('point', {'coordinates': coordinates, 'colors': colors, 'sizes': sizes})
display(rv)

	
add_representation(self, rep_type, options)

	Add a 3D representation to the viewer. See User Guide for
a complete description of the representations available.

	Returns:	An unique hexadecimal identifier for the representation.

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	
remove_representation(self, rep_id)

	Remove a representation from the viewer

	Parameters:	rep_id (str [https://docs.python.org/2/library/functions.html#str]) – the unique identifier generated by RepresentationViewer.add_representation

	
update_representation(self, rep_id, options)

	Update a representation with new data.

	Parameters:	
	rep_id (str [https://docs.python.org/2/library/functions.html#str]) – the unique identifier returned by RepresentationViewer.add_representation

	options (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – dictionary containing the updated data.

	
class TrajectoryControls(self, n_frames, fps=30)

	Play/Pause controls useful for playing trajectories.

Example:

You can connect a callback to be executed every time the frame changes.

from IPython.display import display

controls = TrajectoryControls(10) # 10 frames

def callback(frame):
 print("Current frame %d" % frame)

controls.on_frame_change(callback)
display(controls)

	
frame

	Current frame

	
n_frames

	Total number of frames

	
fps

	Frames per second (defaults to 30)

	
on_frame_change(self, callback)

	Connect a callback to be executed every time the frame attribute changes.

Module chemview.viewer

	
class MolecularViewer(self, coordinates, topology, width=500, height=500)

	Create a Molecular Viewer widget to be displayed in IPython notebook.

	Parameters:	
	coordinates (np.ndarray) – A numpy array containing the 3D coordinates of the atoms to be displayed

	topology (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A dict specifying the topology as described in the User Guide.

	
points(self, size=1.0)

	Display the system as points.

	Parameters:	size (float [https://docs.python.org/2/library/functions.html#float]) – the size of the points.

	
lines(self)

	Display the system bonds as lines.

	
wireframe(self, pointsize=0.2)

	Display atoms as points of size pointsize and bonds as lines.

	
ball_and_sticks(self, ball_radius=0.05, stick_radius=0.02)

	Display the system using a ball and stick representation.

	
line_ribbon(self)

	Display the protein secondary structure as a white lines that passes through the
backbone chain.

	
cylinder_and_strand(self)

	Display the protein secondary structure as a white,
solid tube and the alpha-helices as yellow cylinders.

	
add_isosurface(self, function, isolevel=0.3, resolution=32, style='wireframe', color=16777215)

	Add an isosurface to the current scene.

	Parameters:	
	function (callable [https://docs.python.org/2/library/functions.html#callable]) – A function that takes x, y, z coordinates as input and is broadcastable using numpy. Typically simple
functions that involve standard arithmetic operations and functions
such as x**2 + y**2 + z**2 or np.exp(x**2 + y**2 + z**2) will work. If not sure, you can first
pass the function through numpy.vectorize.
Example: mv.add_isosurface(np.vectorize(f))

	isolevel (float [https://docs.python.org/2/library/functions.html#float]) – The value for which the function should be constant.

	resolution (int [https://docs.python.org/2/library/functions.html#int]) – The number of grid point to use for the surface. An high value will give better quality but lower performance.

	style (str [https://docs.python.org/2/library/functions.html#str]) – The surface style, choose between solid, wireframe and transparent.

	color (int [https://docs.python.org/2/library/functions.html#int]) – The color given as an hexadecimal integer. Example: 0xffffff is white.

Module chemview.trajectory

	
class TrajectoryViewer(self, coordinate_frames, topology, width=500, height=500)

	Display a trajectory in the IPython notebook.

	Parameters:	
	coordinate_frames (list) – A list containing the positions of the atoms (as np.ndarray) for each frame.

	topology (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A dictionary specifying the topology

See also

MolecularViewer

Module chemview.utils

	
encode_numpy(array)

	Encode a numpy array as a base64 encoded string, to be JSON serialized.

	Returns:	a dictionary containing the fields:
- data: the base64 string
- type: the array type
- shape: the array shape

	
get_atom_color(atom_name)

	

Viewing Molecules

Using the MolecularViewer

MolecularViewer is a library-agnostic tool to display molecules in chemview.
In this section we will see how to use it, and what representations are
currently available.

To create a MolecularViewer instance we need the positions of the atoms,
as an array of x, y, z coordinates, and a description of
the features and connectivity of the system (also called topology).

The topology is a nested dictionary with the following fields:

	atom_types

	(required field) A list of strings, each representing an atom symbol.

Example: ["H", "C", "N", "O", ..]

	bonds

	A list of tuples indicating the index of the bond extrema.

Example: [(0, 1), (1, 2), ...]

	atom_names

	A list of atom names, like the ones used in pdb files

Example: ["HA", "CA", "N", ...]

	residue_indices

	A nested list of indices (as tuples) for each residue present in the molecule.

Example: [(0, 1, 2, 3, 4, 5), (6, 7, 8, 9, 10), ...]

	residue_types

	A list of strings corresponding to residue types.

Example: ["ALA", "GLY", ...]

	secondary_structure

	A list of strings representing the secondary structure of each residue,
H for helix, E for sheet, C for coil.

Example: ["H", "H", "H", "C", "C", "E", "E" ...]

Note

As the description of the topology is quite involved, you
can combine chemview with another library that provides the topology directly from
the chemical data files (such as chemlab [https://chemlab.readthedocs.org] and mdtraj [http://mdtraj.org]).

Once you create your molecular viewer, you can display the molecule in a variety of ways:

	points: the atomic positions will be represented as points, color-coded by atom.

Example:

mv.points()

[image: _images/points.png]

	lines: the bonds will be represented as lines

Example:

mv.lines()

[image: _images/lines.png]

	ball_and_sticks: the classical ball and stick representation. Atom are spheres, bonds are cylinders. At the moment this representation is not suitable for very large molecules and animations.

Example:

mv.ball_and_sticks()

[image: _images/ball_and_stick.png]

	line_ribbon: the protein backbone is represented by a smooth line.

Example:

mv.line_ribbon()

[image: _images/line_ribbon.png]

	cylinder_and_strand: the protein backbone is represented by a smooth, solid tube, and the helices are represented as cylinders.

Example:

mv.line_ribbon()

[image: _images/cylinder_and_strand.png]

See also

The MolecularViewer documentation at api/index

You can also add isosurfaces with the command MolecularViewer.add_isosurface() that takes a function and an isovalue. Given a function \(f(x, y, z)\), an isosurface is the set of points for which the function assumes a certain value. For example if you want to plot the surface of sphere with radius 1, we can select a function of the type:

\[f(x, y, z) = x^2 + y^2 + z^2\]

and set the isovalue would be 1, so that we obtain the surface whose set of points that satisfy the equation of a sphere:

\[x^2 + y^2 + z^2 = 1\]

See also

Plotting molecular orbitals

Viewing Molecules with Chemlab

The development version of chemlab [https://chemlab.readthedocs.org] provides a preliminary integration with chemview,
check out the example notebook [http://nbviewer.ipython.org/github/chemlab/chemlab/blob/master/examples/New%20IPython%20support.ipynb].

Viewing Molecules with MDTraj

In the near future, mdtraj [http://mdtraj.org] will provide integration.

While you wait, take a look at the docs [http://mdtraj.org] and learn about mdtraj.

Making custom representations

chemview provides an easy-to-use API to create new ways to display your data
and build novel tools. The class RepresentationViewer contains methods to
display common 3D shapes.

To create a RepresentationViewer instance, type:

rv = RepresentationViewer()
rv

This will display an empty viewer. To add objects, we can use the method
RepresentationViewer.add_representation(). The method takes two
parameters: the name of the representation to display, and a dictionary of
options, that are specific for each representation.

For example, to add three points on the screen we will use the following parameters:

rv.add_representation('points', {'coordinates', np.array([[0.0, 0.0, 0.0],
 1.0, 0.0, 0.0],
 2.0, 0.0, 0.0])})

Warning

The RepresentationViewer communicates directly with the Javascript layer and,
being outside of the realm of Python doesn’t provide nice exception tracebacks.
Be rigorous with parameter types.

For more examples (with pictures) you can check the test notebook [http://nbviewer.ipython.org/github/gabrielelanaro/chemview/blob/master/TestNotebook.ipynb].

Below reference of the available representations, along with their options:

	points

	display a set of coordinates as points with different colors and sizes.

Options:

	
	coordinates

	numpy array of 3D coordinates (float32)

	
	sizes

	python list of floats representing the size of each point

	
	colors

	python list of 32 bit integers representing the color of each point.

Example using HEX representation: [0xffffff, 0x00ffff, 0xff0000, ...]

	lines

	display a set of lines with different colors.

Options:

	
	startCoords

	numpy array of 3D coordinates representing the starting point of each line

	
	endCoords

	numpy array of 3D coordinates representing the ending point of each line

	
	startColors

	list of 32 bit integers corresponding to the color of the starting point

	
	endColors

	list of 32 bit integers corresponding to the color of the ending point

	cylinders

	display a set of cylinders. This is a slow primitive, avoid using it for animations; use lines instead.

Options:

	
	startCoords

	numpy array of 3D coordinates representing the starting point of each cylinder

	
	endCoords

	numpy array of 3D coordinates representing the ending point of each cylinder

	
	colors

	list of 32 bit integers corresponding to the color of each cylinder

	
	radii

	list of float corresponding to the radius of each cylinder

	smoothline

	display a smooth line that passes through a set of points.

Options:

	
	coordinates

	numpy array of 3D coordinates representing the control points of the smooth line.

	
	color

	32 bit integer (hex) color of the line

	
	resolution

	int, number of subdivision along the path between control points. Controls the smoothness

	smoothtube

	display a smooth tube that passes through a set of points. This is a slow primitive, not suitable for animating very large objects; use smoothline instead.

Options:

	
	coordinates

	numpy array of 3D coordinates representing the control points of the smooth tube.

	
	color

	32 bit integer (hex) color of the tube

	
	radius

	float representing the radius of the tube

	
	resolution

	int, number of subdivision along the path between control points. Controls the smoothness

	spheres

	display a set of spheres. This primitive is slow, avoid using it for animations; use points instead.

Options:

	
	coordinates

	numpy array of 3D coordinates representing the position of the spheres.

	
	colors

	list of 32 bit integers representing the color of each sphere

	
	radii

	list of float, radius of each sphere

	
	resolution

	int, number of vertical and horizontal subdivisions to make the sphere:
high resolution means slow performance.

Animation

In this section we’ll see how to update the molecular viewer. We’ll start by creating a water molecule using the MolecularViewer:

import numpy as np
from chemview import MolecularViewer, enable_notebook
enable_notebook()

Draw a water molecule
mv = MolecularViewer(np.array([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]),
 {'atom_types': ['H', 'O', 'H'],
 'bonds': [[0, 1], [1, 2]]},
 width = 300,
 height = 300)
mv.points()
mv.lines()
mv

[image: _images/water_wireframe.png]

	then, all we need to do to move the molecule is to assign a new vector to the attribute coordinates.

	To translate the molecule, we add 0.1 to the x coordinate of each atom:

new_coordinates = mv.coordinates + [0.1, 0.0, 0.0]
mv.coordinates = new_coordinates

Important

To properly update the coordinates, you have to the = (equal) sign, or the system won’t detect the update. Example:

Good: update will be triggered
mv.coordinates = mv.coordinates + [0.1, 0.0, 0.0]

Bad: update won't be triggered
mv.coordinates += [0.1, 0.0, 0.0]

Visualizing Trajectories/Frames

Chemview can display snapshots of systems evolving in time, using a video-player like interface. This functionality is provided by the TrajectoryViewer class.
The TrajectoryViewer widget is a combination of a MolecularViewer widget and a set of controls that automatically update the frames.

To start, we’ll see expand of the previous example. To use the TrajectoryViewer, we need a list of coordinates (one for each frame), and the topology.
We first create the initial frame start_coordinates, then we translate those coordinates by 0.1 units in the x axis for 30 times, once for each frame:

start_coordinates = np.array([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]])

frames = []
for i in range(30):
 frames.append(start_coordinates + [0.1, 0.0, 0.0])
 start_coordinates += [0.1, 0.0, 0.0]

At this point, we can use the trajectory viewer to visualize the frames.

from chemview import TrajectoryViewer

tv = TrajectoryViewer(frames, {'atom_types': ['H', 'O', 'H'],
 'bonds': [[0, 1], [1, 2]]})
tv.lines()
tv

Screenshot:

[image: _images/traj_water.png]
You should now have a nice bar that lets you play, pause, rewind your frames!

Using mdtraj

How do we use the trajectory viewer in practice? To show a real-world example we can get some help from the library mdtraj [http://mdtraj.org].

With mdtraj [http://mdtraj.org] we can read a system and a series of snapshots generated from a simulation.

import mdtraj as md
traj = md.load_pdb('2M6K.pdb')

An mdtraj trajectory contains the coordinates for each frame in the attribute traj.xyz), plus a topology specification in traj.topology. The topology can be converted to chemview format using the utility chemview.contrib.topology_mdtraj(), that takes the trajectory as an input.

from chemview.contrib import topology_mdtraj

tv = TrajectoryViewer(traj.xyz, topology_mdtraj(traj))
tv.line_ribbon()
tv

Screenshot:

[image: Screenshot]

Tip

When animating trajectories of big molecules and systems, use simple representations such as lines, points and line_ribbon because
they are much faster than their “solid” counterparts vdw, ball_and_stick and strand.

Cookbook

This documents contains recipes to accomplish common tasks with chemview.

Syncronizing cameras across multiple widgets

Using the IPython traitlets system it is possible to syncronize the camera
across different widgets. In the following example we download two molecules (ethane and butane) from the
web using the chemlab [http://chemlab.readthedocs.org] API, then we create two molecular viewers and we link their cameras:

from IPython.display import display
from IPython.utils.traitlets import link

from chemview import enable_notebook, MolecularViewer
enable_notebook()

from chemlab.notebook import download_molecule

butane = download_molecule('butane')
ethane = download_molecule('ethane')

Create the two molecular viewer widgets
mv1 = MolecularViewer(butane.r_array, {'atom_types': butane.type_array,
 'bonds': butane.bonds})
mv1.wireframe()

mv2 = MolecularViewer(ethane.r_array, {'atom_types': ethane.type_array,
 'butane': butane.bonds})
mv2.wireframe()

Link their attributes camera_str together
link((mv1, 'camera_str'), (mv2, 'camera_str'))

display(mv1)
display(mv2)

Plotting molecular orbitals

API Reference

Module chemview.widget

	
class RepresentationViewer(self, width=500, height=500)

	RepresentationViewer is an IPython notebook widget useful to display 3d scenes through webgl.

Example:

from IPython.display import display

rv = RepresentationViewer()
rv.add_representation('point', {'coordinates': coordinates, 'colors': colors, 'sizes': sizes})
display(rv)

	
add_representation(self, rep_type, options)

	Add a 3D representation to the viewer. See User Guide for
a complete description of the representations available.

	Returns:	An unique hexadecimal identifier for the representation.

	Return type:	str [https://docs.python.org/2/library/functions.html#str]

	
remove_representation(self, rep_id)

	Remove a representation from the viewer

	Parameters:	rep_id (str [https://docs.python.org/2/library/functions.html#str]) – the unique identifier generated by RepresentationViewer.add_representation

	
update_representation(self, rep_id, options)

	Update a representation with new data.

	Parameters:	
	rep_id (str [https://docs.python.org/2/library/functions.html#str]) – the unique identifier returned by RepresentationViewer.add_representation

	options (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – dictionary containing the updated data.

	
class TrajectoryControls(self, n_frames, fps=30)

	Play/Pause controls useful for playing trajectories.

Example:

You can connect a callback to be executed every time the frame changes.

from IPython.display import display

controls = TrajectoryControls(10) # 10 frames

def callback(frame):
 print("Current frame %d" % frame)

controls.on_frame_change(callback)
display(controls)

	
frame

	Current frame

	
n_frames

	Total number of frames

	
fps

	Frames per second (defaults to 30)

	
on_frame_change(self, callback)

	Connect a callback to be executed every time the frame attribute changes.

Module chemview.viewer

	
class MolecularViewer(self, coordinates, topology, width=500, height=500)

	Create a Molecular Viewer widget to be displayed in IPython notebook.

	Parameters:	
	coordinates (np.ndarray) – A numpy array containing the 3D coordinates of the atoms to be displayed

	topology (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A dict specifying the topology as described in the User Guide.

	
points(self, size=1.0)

	Display the system as points.

	Parameters:	size (float [https://docs.python.org/2/library/functions.html#float]) – the size of the points.

	
lines(self)

	Display the system bonds as lines.

	
wireframe(self, pointsize=0.2)

	Display atoms as points of size pointsize and bonds as lines.

	
ball_and_sticks(self, ball_radius=0.05, stick_radius=0.02)

	Display the system using a ball and stick representation.

	
line_ribbon(self)

	Display the protein secondary structure as a white lines that passes through the
backbone chain.

	
cylinder_and_strand(self)

	Display the protein secondary structure as a white,
solid tube and the alpha-helices as yellow cylinders.

	
add_isosurface(self, function, isolevel=0.3, resolution=32, style='wireframe', color=16777215)

	Add an isosurface to the current scene.

	Parameters:	
	function (callable [https://docs.python.org/2/library/functions.html#callable]) – A function that takes x, y, z coordinates as input and is broadcastable using numpy. Typically simple
functions that involve standard arithmetic operations and functions
such as x**2 + y**2 + z**2 or np.exp(x**2 + y**2 + z**2) will work. If not sure, you can first
pass the function through numpy.vectorize.
Example: mv.add_isosurface(np.vectorize(f))

	isolevel (float [https://docs.python.org/2/library/functions.html#float]) – The value for which the function should be constant.

	resolution (int [https://docs.python.org/2/library/functions.html#int]) – The number of grid point to use for the surface. An high value will give better quality but lower performance.

	style (str [https://docs.python.org/2/library/functions.html#str]) – The surface style, choose between solid, wireframe and transparent.

	color (int [https://docs.python.org/2/library/functions.html#int]) – The color given as an hexadecimal integer. Example: 0xffffff is white.

Module chemview.trajectory

	
class TrajectoryViewer(self, coordinate_frames, topology, width=500, height=500)

	Display a trajectory in the IPython notebook.

	Parameters:	
	coordinate_frames (list) – A list containing the positions of the atoms (as np.ndarray) for each frame.

	topology (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A dictionary specifying the topology

See also

MolecularViewer

Module chemview.utils

	
encode_numpy(array)

	Encode a numpy array as a base64 encoded string, to be JSON serialized.

	Returns:	a dictionary containing the fields:
- data: the base64 string
- type: the array type
- shape: the array shape

	
get_atom_color(atom_name)

	

Index

 A
 | B
 | C
 | E
 | F
 | G
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	add_isosurface() (MolecularViewer method)

 	add_representation() (RepresentationViewer method)

 	
 	atom_names

 	atom_types

B

 	
 	ball_and_sticks() (MolecularViewer method)

 	
 	bonds

C

 	
 	cylinder_and_strand() (MolecularViewer method)

 	
 	cylinders

E

 	
 	encode_numpy() (built-in function)

F

 	
 	fps (TrajectoryControls attribute)

 	
 	frame (TrajectoryControls attribute)

G

 	
 	get_atom_color() (built-in function)

L

 	
 	line_ribbon() (MolecularViewer method)

 	
 	lines

 	lines() (MolecularViewer method)

M

 	
 	MolecularViewer (built-in class)

N

 	
 	n_frames (TrajectoryControls attribute)

O

 	
 	on_frame_change() (TrajectoryControls method)

P

 	
 	PointRenderer() (class)

 	
 	points

 	points() (MolecularViewer method)

R

 	
 	remove_representation() (RepresentationViewer method)

 	RepresentationViewer (built-in class)

 	
 	residue_indices

 	residue_types

S

 	
 	secondary_structure

 	smoothline

 	
 	smoothtube

 	spheres

T

 	
 	TrajectoryControls (built-in class)

 	
 	TrajectoryViewer (built-in class)

U

 	
 	update_representation() (RepresentationViewer method)

W

 	
 	wireframe() (MolecularViewer method)

Scene Description Language

Chemview uses a scene description language in python dictionary and exportable
to json.

	scene:

	
	camera: camera_spec

	representations : list of representation_spec.

	camera_spec:

	
	aspect: float Aspect ratio

	vfov: int field of view in degrees between 0 and 180

	quaternion: list(float, length=4) quaternion representing camera rotation

	location: list(float, length=3) camera location

	target: list(float, length=3) camera target

	representation_spec: dict with the following specification:

	
	rep_id:string unique identifier for the representation

	rep_type: string spheres | points | cylinders | lines | surface

	options: option_spec

option_spec: a dict that contains the option. Different options must be
passed for different types.

	spheres:

	
	coordinates: array(float32, shape=(n, 3)) of 3D coordinates

	radii: list(float32) of numbers representing sphere radius

	alpha: list(float32) alpha transparency

	colors: list(uint8) of colors (hexadecimal)

Optional: radii, alpha, colors

	points:

	
	coordinates: array(float32, shape=(n, 3)) 3D coordinates

	sizes: list(float32) point sizes

	colors: list(uint8) point colors (hexadecimal)

	visible: list(bool) point visibility

Optional: sizes, colors, visible

	cylinders:

	
	startCoords: array(float32, shape=(n, 3)) 3D coordinates

	endCoords; array(float32, shape=(n, 3)) 3D coordinates

	radii: cylinder radii

	colors: cylinder colors

	alpha: list(float32) transparency level

Optional: radii, colors

	lines:

	
	startCoords: array(float32, shape=(n, 3)) 3D coordinates

	endCoords; array(float32, shape=(n, 3)) 3D coordinates

	startColors: list(uint8)

	endColors: list(uint8)

Optional: startColors, endColors, radii

	surface:

	
	verts array(float32, shape=(n, 3)) vertices of the surface

	faces: array(uint8, shape=(n, 3)) indices of the faces

	colors: list(uint8)

	alpha: list(float32) transparency level

Optional: colors, alpha

	smoothtube:

	

	coordinates: array(float32, shape=(n, 3)) control points for the tube

	radius: int width of the tube

	color: uint8 color of the tube

	resolution: int how many segments to use to smooth the tube

Optional: radius, color, resolution

	ribbon:

	
	coordinates: array(float32, shape=(n, 3)) control points

	normals: array(float32, shape=(n, 3)) normal at the control points

	resolution: int ribbon resolution

	color: uint8 color of the ribbon

	width: float width of the ribbon

	arrow: arrow wether to have an arrow at the end of the ribbon.

Optional: normals, resolution, color, width, arrow

Offline Rendering

Chemview interactive visualization are “nice”, but are not something you would
put in a publication. In this case we can use Povray [http://www.povray.org/]
throught the vapory bindings.

On Ubuntu, you can install povray with:

sudo apt-get install povray

And installing vapory is as easy as:

pip install vapory

Scene dictionary format:

	{ ‘representations’: [],

	
	‘camera’: {‘aspect’ : 10,

	‘location’: [0, 0, 0],
‘target’: [0, 0, 0],
‘quaternion’: [0, 0, 0, 1],
‘vfov’: 10},

‘lights’: [{‘direction’}],
‘shadows’ : False,

}

Grammar of graphics interface

Inspired by the huge success of the ggplot package for R, chemview implements
a similar grammar of graphics.

The grammar of graphics interface encourage separation of data and graphics
giving composable and rich visualizations. An example best explains the concept:

from chemview.gg import *
coordinates = [[0.0, 0.0, 0.0],
 [0.0, 0.0, 0.3],
 [0.0, 0.0, 0.4],
 [0.0, 0.0, 0.5],
 [0.0, 0.0, 0.6],
 [0.0, 0.0, 0.7]]
values = [0.0, 0.1, 0.2, 0.3, 0.5, 0.6]
mask = np.array([False, True, True, False, True, True])
gg = ggview(Aes(xyz=coordinates, colors=values,
 visible=mask))

The class ggview takes an argument of type Aes that maps graphic
(aesthetic) properties to the data. In this case we bind
the xyz attribute is set to represent the coordinates, the property

colors is bound to a set of floating point numbers, and visible is
bound to a mask.

This mappings are not useful by themselves, but they take life when combined
with geometric objects, if we add GeomPoints(), a set of points is displayed
color-coded and masked by the values we passed earlier.

gg + GeomPoints()
gg.display() # for interactive viz in Jupyter notebook
gg.render() # for static viz

To display a molecule color-coded by atom type it is sufficient to write:

gg = ggview(Aes(xyz=coordinates,
 colors=['H', 'O', 'H', 'H', 'O', 'H'])) + GeomPoints()
gg.display()

This way of doing graphics is extremely powerful because graphic elements
can be easily composed to create custom visualizations.

Trajectories

This style is also apt to trajectory visualizations. In general, you can make a
certain aesthetics to have a value that varies over time by suffixing it with

_traj

You can similarly change colors_traj to an array of shape (10, 100) to
obtain a color that changes frame by frame.

Overriding aesthetics

It is easy to override Aes values.

Scales

Scales are useful to display an indication of a certain scale in the data
(for example colors). Right now only color bar is supported:

Theming

Other Examples

GeomLines()

GeomCylinders()

GeomSpheres()

GeomBackbone()

GeomCartoon()

 import chemview
chemview.enable_notebook()
from chemview import RepresentationViewer
from IPython.display import display
import numpy as np

<IPython.core.display.Javascript at 0x7f4b60147550>

<IPython.core.display.Javascript at 0x7f4b50a30d90>

coordinates = np.array([[0.0, 1.1, 0.1], [1, 0, 0]], 'float32')
radii = np.array([1.0, 0.7]).astype('float32')
colors = [0xFFFFFF, 0xFF999F]
sizes = [1.0, 2.0]

rv = RepresentationViewer()
surf_id = rv.add_representation('spheres', {'coordinates': coordinates, 'radii': radii, 'resolution': 8})
point_id = rv.add_representation('point', {'coordinates': coordinates, 'colors': colors, 'sizes': sizes})
rv

#rv.update_representation(point_id, {'sizes': [2.0, 1.0]})
rv.remove_representation(surf_id)

import mdtraj as md
traj = md.load_pdb('http://www.rcsb.org/pdb/files/2M6K.pdb')
print traj

<mdtraj.Trajectory with 30 frames, 4462 atoms, 292 residues, and unitcells>

atoms = list(traj.topology.atoms)
chain = list(traj.topology.chains)[0]
atom = atoms[1]
atom.element, atom.is_backbone(), atom.residue
list(chain.atoms)[0]

ALA24-N

We can render backbones as chains
#rv = RepresentationViewer()
import numpy as np
for chain in traj.topology.chains:
 backbone_coords = []
 backbone_idx = []
 for atom in chain.atoms:
 if atom.name == 'CA':
 backbone_idx.append(atom.index)
 #print atom.index, atom.name
backbone_coords = traj.xyz[0][backbone_idx].astype('float32')
#print backbone_coords
smooth_id = rv.add_representation('smoothtube', {'coordinates': backbone_coords, 'radius': 0.05, 'resolution': 8})

import itertools
import time

for coords in itertools.cycle(traj.xyz):
 rv.update_representation(smooth_id, {'coordinates': coords[backbone_idx].astype('float32')})
 time.sleep(1)

KeyboardInterrupt Traceback (most recent call last)

<ipython-input-8-45aab733935e> in <module>()
 4 for coords in itertools.cycle(traj.xyz):
 5 rv.update_representation(smooth_id, {'coordinates': coords[backbone_idx].astype('float32')})
----> 6 time.sleep(1)

KeyboardInterrupt:

how do we find the helices?

rv = RepresentationViewer()

for chain in traj.topology.chains:
 backbone_coords = []
 backbone_idx = []
 for atom in chain.atoms:
 if atom.name == 'CA':
 backbone_idx.append(atom.index)
 #print atom.index, atom.name
backbone_coords = traj.xyz[0][backbone_idx].astype('float32')
#print backbone_coords
smooth_id = rv.add_representation('smoothtube', {'coordinates': backbone_coords, 'radius': 0.05, 'resolution': 8})

Secondary structure
from itertools import groupby
dssp = md.compute_dssp(traj[0])[0]
top = traj.topology
result = []
keyfunc = lambda ir : (top.residue(ir[0]).chain, ir[1])
for (chain, ss), grouper in groupby(enumerate(dssp), keyfunc):
 # rindxs is a list of residue indices in this contiguous run
 rindxs = [g[0] for g in grouper]
 start_index = top.residue(rindxs[0]).atom(0).index
 end_index = top.residue(rindxs[-1]).atom(0).index
 if ss == 'H':
 rv.add_representation('cylinder', {'start': traj.xyz[0][start_index].tolist(),
 'end': traj.xyz[0][end_index].tolist(),
 'radius': 0.4})
rv

from chemview.widget import encode_numpy
from chemlab.db import CirDB
from chemview.widget import MolecularViewer
cirdb = CirDB()
alanine = cirdb.get('molecule', 'benzene')

print alanine.type_array
mv = MolecularViewer(coordinates = alanine.r_array,
 atom_types = alanine.type_array)
#mv.add_vdw_surface(64)
mv

[u'C' u'C' u'C' u'C' u'C' u'C' u'H' u'H' u'H' u'H' u'H' u'H']

/home/gabriele/workspace/chemlab/chemlab/core/molecule.py:338: FutureWarning: comparison to None will result in an elementwise object comparison in the future.
 if val == None:

for i in range(10000):
 mv.update_representation(mv.representations_id[0], {'coordinates': (alanine.r_array + (np.random.random(3)-0.5)).astype('float32')})

NameError Traceback (most recent call last)

<ipython-input-2-1cec986f714c> in <module>()
 1 for i in range(10000):
----> 2 mv.update_representation(mv.representations_id[0], {'coordinates': (alanine.r_array + (np.random.random(3)-0.5)).astype('float32')})

NameError: name 'np' is not defined

from chemview.widget import AnimationViewer
import numpy as np
class MyViewer(AnimationViewer):
 def update(self, frame):
 self.remove_vdw_surface()
 self.coordinates = self.coordinates + (np.random.random(3)-0.5)
 self.add_vdw_surface(32)

MyViewer(coordinates = alanine.r_array, atom_types=alanine.type_array, frames=100)

 To import chemview you can write and execute the following code in a
cell:

from chemview import enable_notebook, MolecularViewer
enable_notebook()

The function enable_notebook will load the necessary files to display
the molecular viewer in the browser. To display a benzene molecule we
need at least two pieces of information:

	The atomic types

	The atomic coordinates

	The bonds between atoms

For the scope of this tutorial, the information were extracted from
here. You can use chemical package (like mdtraj or chemlab) to read the
coordinates of your molecules.

We define the coordinates as a numpy array, the atomic types as a list
of strings and the bonds as a list of start, end tuples.

import numpy as np
coordinates = np.array([[0.00, 0.13, 0.00], [0.12, 0.07, 0.00], [0.12,-0.07, 0.00],
 [0.00,-0.14, 0.00], [-0.12,-0.07, 0.00],[-0.12, 0.07, 0.00],
 [0.00, 0.24, 0.00], [0.21, 0.12, 0.00], [0.21,-0.12, 0.00],
 [0.00,-0.24, 0.00], [-0.21,-0.12, 0.00],[-0.21, 0.12, 0.00]])
atomic_types = ['C', 'C', 'C', 'C', 'C', 'C', 'H', 'H', 'H', 'H', 'H', 'H']
bonds = [(0, 6), (1, 7), (2, 8), (3, 9), (4, 10), (5, 11),
 (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 0)]

We can pass those to the class MolecularViewer and call the method lines
to render the molecule as a wireframe:

mv = MolecularViewer(coordinates, topology={'atom_types': atomic_types,
 'bonds': bonds})
mv.lines()
mv

You can rotate (left click), pan(right click) and zoom (wheel) to
visualize your molecules.

The Javascript Viewer

The javascript viewer is developed on the library THREE.js.

We have a collection of classes, Renderers and each renderer has its own functionality.

	
class PointRenderer(coords, colors, sizes)

	

	Arguments:	
	coords (Float32View) – Coordinates as a flat typed array.

	colors (List) – Colors as hexadecimal values passed as a string.

	sizes (List) – The size of the points passed as a list. Note that the sizes may not be
representative and they have a max cap of 16.

Renders the coordinates as round points in space.

 _static/images/cylinder_and_strand.png

_static/images/traj_water.png
0129

_static/down-pressed.png

_static/images/ball_and_stick.png
.

e

_static/ajax-loader.gif

_static/images/points.png

_static/up.png

_static/images/line_ribbon.png

_static/comment.png

_images/traj_protein.png

_static/plus.png

_images/cylinder_and_strand.png

_static/down.png

_images/water_wireframe.png

_static/comment-close.png

_images/lines.png

_static/logo.png
ChemView

_images/points.png

_images/line_ribbon.png

nav.xhtml

 Table of Contents

 		Welcome to chemview's documentation!

 		Installation and Quick Start

 		Quick Start

 		Viewing Molecules

 		Animation

 		Low Level API

 		Viewing Molecules

 		Using the MolecularViewer

 		Viewing Molecules with Chemlab

 		Viewing Molecules with MDTraj

 		Making custom representations

 		Animation

 		Visualizing Trajectories/Frames

 		Using mdtraj

 		Cookbook

 		Syncronizing cameras across multiple widgets

 		Plotting molecular orbitals

 		API Reference

 		Module chemview.widget

 		Module chemview.viewer

 		Module chemview.trajectory

 		Module chemview.utils

_images/traj_water.png
0129

_static/up-pressed.png

_static/file.png

_images/ball_and_stick.png
.

e

_static/minus.png

_static/images/water_wireframe.png

_static/images/lines.png

_static/comment-bright.png

_static/images/traj_protein.png

